

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 1429-1433

Synthesis of moenocinol and its analogs using BT-sulfone in Julia-Kocienski olefination

Hung-Jyun Huang and Wen-Bin Yang*

Genomics Research Center, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan

Received 17 November 2006; revised 13 December 2006; accepted 15 December 2006 Available online 23 December 2006

Abstract—Moenocinol ($C_{25}H_{42}O$), the acyclic terpenoid unsaturated lipid part of moenomycin antibiotics, was prepared by an expedient method, which comprised organometallic reaction, Julia-Kocienski olefination, and enolate carbon bond formation as the key steps. The starting materials, nerol and 3-butyn-1-ol, were elaborated to the benzothiazole sulfone 2 and aldehyde 3, and the subsequent Julia-Kocienski olefination occurred in a stereospecific manner to give the desired 6*E*-configuration of moenocinol. Moenocinol (1) was thus synthesized by 10 linear steps in 12% overall yield, and its analogs 23, 24, and 28 with different chain lengths and unsaturation degrees were also realized by the similar reaction sequences. © 2007 Elsevier Ltd. All rights reserved.

The antibiotic moenomycin A (Scheme 1) belongs to one of the most efficient inhibitors targeting transglycosylase for the bacterial cell wall biosynthesis.¹ The structure of moenomycin consists of a pentasaccharide part linked to the phosphoglycerate moiety that is modified with the moenocinol (1). The moenocinol moiety is essential to the antibacterial activity of moenomycin A; lack of moenocinol or replacement of lipid chains with different lengths or saturation degrees may change the potency of such antibiotics.²

Scheme 1. Structure of moenocinol and its synthetic strategy.

Keywords: Moenocinol; Julia-Kocienski olefination; BT-sulfone; Molybdenum-catalyzed oxidation.

^{*} Corresponding author. Tel.: +886 2 27899930x339; fax: +886 2 27899931; e-mail: wbyang@gate.sinica.edu.tw

^{0040-4039/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.12.119

Moenocinol 1 ($C_{25}H_{42}O$, 25:5), where 25 indicates the carbon numbers and 5 indicates the degree of unsaturation, has been synthesized using different strategies.^{2a,3} Herein, we demonstrate a new and straightforward synthetic approach to obtain high yields of moenocinol and its analogs. Based on the retrosynthetic analysis (Scheme 2), the strategic bonds at C_6-C_7 , C_8-C_9 , and $C_{11}-C_{12}$ could be formed, respectively, by using Julia-Kocienski olefination, enolate alkylation, and organometallic reaction. The Julia-Kocienski olefination would afford the desired 6*E*-configuration in moenocinol.⁴ Benzothiazole (BT) sulfone 2 could be derived from nerol. Aldehyde 3 could be prepared from methyl isobutyrate and iodide 4, which was in turn built via substitution reaction of geranyl bromide 5 with vinyl lithium. Nerol and geranyl bromide are commercially available for this synthetic application.

The benzothiazole (BT) 2 was prepared from nerol in 59% overall yield (Scheme 3). The OH group of nerol was protected as the *tert*-butyldiphenylsilyl (TBDPS) ether, giving 6, and epoxidation with m-CPBA afforded a racemic mixture of $(\pm)7$ ⁵ which was cleaved by periodic acid to give aldehyde 8. When the TBDPS protecting group in 6 was replaced by tert-butyldimethylsilyl (TBDMS) group, the yield of the periodic acid cleavage reaction dropped drastically due to the undesired acidcatalyzed deprotection of the TBDMS group. Reduction of compound 8 by NaBH₄/EtOH, at 0 °C gave 99% of the alcohol 9. The Mitsunobu reaction⁶ with BT(SH), PPh₃, and DIAD (THF, 25 °C, 4 h) gave 10 in 97% yield. The molybdenum-catalyzed oxidation⁷ of sulfide **10** gave BT-sulfone 2 in 77% yield.⁸ The double bond was not affected under such mild oxidation conditions. The 1phenyltetrazole-2-sulfone analog of **2** was also prepared; albeit in a lower yield. BT-sulfone **2** was stable on standing at room temperature for a prolonged period.

On the other hand, 3-butyn-1-ol was treated with NaI and Me₃SiCl in acetonitrile to give 3-iodobut-3-en-1ol.^{9,10} which was converted to the TBDPS ether 11 in 72% overall yield (Scheme 4). Metalation of 11 by n-BuLi (1.5 equiv) at -110 °C gave the corresponding vinyllithium, which reacted with geranyl bromide in THF at -78 °C, followed by removal of the TBDPS group with 1 M TBAF to give alcohol 12 in 65% yield.¹¹ Alcohol 12 was activated as the corresponding iodide 4 (PPh₃, imidazole, I₂, Garegg-Samuelsson reaction) for the coupling reaction with the lithium enolate of methyl isobutyrate. The coupling product was then reduced by DIBAL-H (2.2 equiv) to afford alcohol 13 in 59% overall vield. Alcohol 13 was oxidized to aldehyde 3 (cat. TPAP, NMO in CH₂Cl₂ at room temperature), which underwent Julia-Kocienski olefination with BT-sulfone 2 to give 14 exclusively in the 6E form. The product showed a large coupling constant (15.6 Hz) between the olefinic protons on the newly formed $C_6 = C_7$ double bond. No 6Z isomer was observed in the ¹H NMR spectrum of the reaction mixture. After removal of the TBDPS group, moenocinol 1^{12} was obtained in 12%overall yield from 3-butyn-1-ol by 10 linear steps. The spectral properties of this synthetic sample was in agree-ment with the published data for moenocinol.^{3d,f,13}

BT-sulfone 2 is a common precursor for the synthesis of unsaturated analogs of moenocinol, for example, 23 (21:4) and 24 (26:5) as shown in Scheme 5. The lithium enolate of methyl isobutyrate was reacted with geranyl bromide or farnesyl bromide to give 15 (n = 1, 90%); 16 (n = 2, 93%), respectively. The reduction of esters

Scheme 2. Retrosynthetic analysis of moenocinol 1.

Scheme 3. Synthesis of the common precursor 2, a BT-sulfone for Julia-Kocienski olefination.

Scheme 4. Stereoselective synthesis of moenocinol 1.

15 and **16** using 2.2 equiv of DIBAL-H gave alcohols **17** and **18**, which were readily transformed into aldehydes **19** (82%) and **20** (80%) by NMO in the presence of a catalytic amount of TPAP. Julia-Kocienski olefination of **19** and **20** with BT-sulfone **2** afforded **21** and **22** having exclusively the 6*E*-configuration as shown by the large coupling constant (15.6 Hz) in the ¹H NMR spectra. The TBDPS group was removed by 1 M TBAF to give the moenocinol analogs **23** ($C_{21}H_{36}O$, 21:4)¹⁴ and **24**

 $(C_{26}H_{44}O, 26:5)^{15}$ in 5 linear steps from geranyl bromide and farnesyl bromide with 26% and 34% overall yields.

We also synthesized **28** ($C_{22}H_{38}O$, 22:4)¹⁶ bearing an extra sp³ carbon (C_9) by extension of geraniol (Scheme 6). Geraniol was oxidized to an aldehyde (SO₃· pyridine, DMSO), and reacted with Wittig reagent ($CH_3P^+Ph_3Br^-$, NaHMDS) to give triene **25**. The

Scheme 5. Synthesis of (21:4) and (26:5) moenocinol analogs 23 (C₂₁H₃₆O) and 24 (C₂₆H₄₄O).

Scheme 6. Synthesis of (22:4) moenocinol analog 28 (C₂₂H₃₈O) with sp³ carbon between isoprene units.

terminal double bond in **25** reacted selectively with 9-BBN, and the subsequent oxidation with H_2O_2 in the presence of 3 N NaOH gave alcohol **26**. By the procedures similar to that delineated in Scheme 4, alcohol **26** was activated as iodide **27** to culminate in the synthesis of **28** with 14% overall yield in 9 linear steps from geraniol. The $C_6=C_7$ double bond in **28** formed by the Julia-Kocienski olefination also existed exclusively in the *E*-configuration (J = 15.6 Hz).

In conclusion, we have devised an efficient and highyielding method for the synthesis of moenocinol 1 and its analogs 23, 24, and 28. A BT-sulfone 2 served as the common precursor for Julia-Kocienski olefination to build the desired *E*-configuration at the $C_6=C_7$ double bonds of these unsaturated lipids. In comparison with the lengthy procedures (>10 steps) and low yields (<10%) in the previous syntheses of moenocinol,³ our current synthetic method has the advantages of shorter route (10 steps), higher yield (12%) and exclusive formation of the desired *E*-isomer. Further chemical modifications and linkage of the unsaturated lipids to phosphoglycerate and sugars are under investigation in order to establish the structure and activity relationship of moenomycin antibiotics.

Acknowledgments

We thank Academia Sinica for financial support and Professor Jim-Min Fang (Department of Chemistry, National Taiwan University) for helpful discussion.

References and notes

- (a) Liu, H.; Ritter, T. K.; Sadamoto, R.; Sears, P. S.; Wu, M.; Wong, C. H. *ChemBioChem.* 2003, *4*, 603–609; (b) Ritter, T. K.; Wong, C. H. *Angew. Chem., Int. Ed.* 2001, *40*, 3508–3533; (c) Schuricht, U.; Endler, K.; Hennig, L.; Findeisen, M.; Welzel, P. *J. Prakt. Chem.* 2000, *342*, 761– 772.
- (a) Adachi, M.; Zhang, Y.; Leimkuhler, C.; Sun, B.; LaTour, J. V.; Kahne, D. E. J. Am. Chem. Soc. 2006, 128, 14012–14013; (b) Kurz, M.; Guba, W.; Vertesy, L. Eur. J. Biochem. 1998, 252, 500–507.
- (a) Welzel, P.; Böttger, D.; Heinz, U.; Said, A. H.; Fischer, A.; Adams, E. Pure Appl. Chem. 1987, 59, 385–392; (b) Stumpp, M. C.; Schmidt, R. R. Tetrahedron 1986, 42, 5941–5948; (c) Böttger, D.; Welzel, P. Tetrahedron Lett. 1983, 24, 5201–5204; (d) Coates, R. M.; Johnson, M. W. J. Org. Chem. 1980, 45, 2685–2697; (e) Kocienski, P. J. J. Org. Chem. 1980, 45, 2037–2039; (f) Grieco, P. A.; Masaki, Y.; Boxler, D. J. Am. Chem. Soc. 1975, 97, 1597–1599; (g) Tschesche, R.; Reden, J. Liebigs Ann. Chem. 1974, 853–863.
- (a) Lebrun, M. E.; Marquand, P. L.; Berthelette, C. J. Org. Chem. 2006, 71, 2009–2013; (b) Blakemore, P. R.; Ho, D. K. H.; Nap, W. M. Org. Biomol. Chem. 2005, 3, 1365–1368; (c) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 26–28.
- Muto, S. E.; Nishimura, Y.; Mori, K. Eur. J. Org. Chem. 1999, 2159–2165.
- Hughes, D. L.; Reamer, R. A.; Bergan, J. J.; Grabowski, E. J. J. J. Am. Chem. Soc. 1988, 110, 6487–6491.
- (a) Vaz, B.; Alvarez, R.; Bruckner, R.; Lera, A. R. Org. Lett. 2005, 7, 545–548; (b) Jasper, C.; Wittenberg, R.; Quitschalle, M.; Jakupovic, J.; Kirschning, A. Org. Lett. 2005, 7, 479–482; (c) Schultz, H. S.; Freyermuth, H. B.; Buc, S. R. J. Org. Chem. 1963, 28, 1140–1142.
- 8. Data for compound **2**: IR (neat) cm⁻¹ = 2930, 2856, 1715, 1326, 1148, 701; ¹H NMR (400 MHz, CDCl₃) δ 0.98 (s, 9H, *t*-Bu), 1.64 (s, 3H, 3-CH₃), 1.86–1.91 (m, 2H), 1.97–2.00 (m, 2H), 3.32 (m, 2H), 4.11 (d, *J* = 6.0 Hz, 2H, O–CH₂), 5.45 (t, *J* = 6.0 Hz, 1H, 2-H), 7.33–8.15 (m, 14H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 152.6, 136.7, 135.5, 135.4, 135.0, 133.7, 129.6, 128.0, 127.6, 126.8, 125.4, 122.3, 60.2, 53.9, 30.0, 26.7, 22.7, 20.2, 19.0; HRMS (ESI) *m/z* (M+Na)⁺ 572.1712; calcd for C₃₀H₃₅NO₃S₂SiNa: 572.1725.
- Sugiyama, H.; Yokokawa, F.; Shioiri, T. *Tetrahedron* 2003, 59, 6579–6593.
- 10. Barriault, L.; Deon, D. H. Org. Lett. 2001, 3, 1925-1927.
- 11. Uenishi, J.; Matsui, K.; Wada, A. *Tetrahedron Lett.* **2003**, *44*, 3093–3096.
- 12. Data for compound 1 (moenocinol): IR (neat) $cm^{-1} = 3318, 2901, 2924, 2855, 2361, 1446, 1377, 999,$

973; ¹H NMR (600 MHz, CDCl₃) δ 0.94 (s, 6H, CH₃ × 2), 1.37–1.34 (m, 2H), 1.58 (s, 3H), 1.59 (s, 3H), 1.66 (s, 3H), 1.72 (s, 3H), 1.88–1.86 (m, 2H), 2.01–1.99 (m, 2H), 2.13– 2.05 (m, 6H), 2.67 (d, J = 7.2 Hz, 2H, 12-H), 4.09 (d, J = 7.2 Hz, 2H, *exo-*C=CH₂), 4.66 (d, J = 4.2 Hz, 2H, 1-H), 5.08 (t, J = 6.6 Hz, 1H, 17-H), 5.15 (t, J = 7.2 Hz, 1H, 13-H), 5.23 (dt, J = 15.6, 6.6 Hz, 1H, 6-H), 5.34 (d, J = 15.6 Hz, 1H, 7-H), 5.42 (t, J = 7.2 Hz, 1H, 2-H); ¹³C NMR (150 MHz, CDCl₃) δ 150.1, 140.7, 139.8, 136.4, 131.4, 125.2, 124.4, 124.3, 121.9, 108.3, 59.1, 41.4, 39.8, 35.5, 35.0, 32.2, 31.4, 31.3, 27.3, 26.7, 25.7, 23.5, 17.7, 15.9; HRMS (ESI) *m/z* 359.3372 (M+H)⁺; calcd for C₂₅H₄₂OH: 359.3314.

- Kempin, U.; Hennig, L.; Welzel, P.; Marzian, S.; Müller, D.; Fehlhaber, H.-W.; Markus, A.; van Heijenoort, Y.; van Heijenoort, J. *Tetrahedron* 1995, *51*, 8471–8482.
 Data for compound 23: IR (neat) cm⁻¹ = 3339, 2960, 2925,
- 14. Data for compound **23**: IR (neat) cm⁻¹ = 3339, 2960, 2925, 2864, 2360, 1445, 1377, 971; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (s, 6H, CH₃ × 2), 1.11 (br, 1H, OH), 1.55 (s, 3H, CH₃), 1.58 (s, 3H, CH₃), 1.66 (s, 3H, CH₃), 1.72 (s, 3H, CH₃), 1.91 (d, *J* = 7.6 Hz, 2H, 9-H), 1.97–2.14 (m, 8H), 4.08 (d, *J* = 7.2 Hz, 2H, 1-H), 5.05–5.12 (m, 2H, 10-H and 14-H), 5.23 (dt, *J* = 15.6, 6.4 Hz, 1H, 6-H), 5.38–5.44 (m, 2H, 2-H and 7-H); ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 139.8, 136.2, 131.2, 124.7, 124.5, 124.4, 121.4, 59.1, 41.0, 40.0, 36.6, 32.3, 31.4, 29.4, 27.0, 26.7, 25.7, 23.5, 17.7, 16.1; HRMS (ESI) *m/z* 327.2691 (M+Na)⁺; calcd for C₂₁H₃₆ONa: 327.2664.
- 15. Data for compound **24**: IR (neat) cm⁻¹ = 3358, 2959, 2925, 2855, 2360, 1446, 1379, 972; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (s, 6H, CH₃ × 2), 1.07 (br, 1H, OH), 1.56 (s, 3H, CH₃), 1.58 (s, 6H, CH₃ × 2), 1.66 (s, 3H, CH₃), 1.72 (s, 3H, CH₃), 1.90–2.11 (m, 14H), 4.09 (m, 2H), 5.06–5.13 (m, 3H), 5.23 (dt, *J* = 15.6, 8.4 Hz, 1H, 7-H), 5.40 (d, *J* = 15.6 Hz, 1H, 6-H), 5.42 (t, *J* = 6.0 Hz, 1H, 2-H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 139.9, 136.3, 134.9, 131.3, 124.7, 124.4, 124.3, 124.2, 121.3, 59.1, 41.0, 40.0, 39.8, 36.6, 32.3, 31.4, 29.4, 27.0, 26.8, 26.6, 25.7, 23.5, 17.7, 16.2, 16.0; HRMS (ESI) *m/z* 395.3245 (M+Na)⁺; calcd for C₂₆H₄₄ONa: 395.3290.
- 16. Data for compound **28**: IR (neat) cm⁻¹ = 3341, 2959, 2924, 2856, 2361, 1446, 1377, 972; ¹H NMR (400 MHz, CDCl₃) δ 0.93 (s, 6H, CH₃ × 2), 1.25–1.20 (m, 2H), 1.36 (br s, 1H, OH), 1.56 (s, 3H), 1.58 (s, 3H), 1.66 (s, 3H), 1.71 (s, 3H), 1.88–1.82 (m, 2H), 1.96–1.92 (m, 2H), 2.13–2.01 (m, 6H), 4.09 (dd, *J* = 7.2, 0.8 Hz, 2H), 5.09–5.06 (m, 2H), 5.23 (dt, *J* = 15.6, 6.0 Hz, 1H), 5.36 (d, *J* = 15.6 Hz, 1H), 5.42 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 139.8, 134.6, 313.3, 125.1, 125.0, 124.4 (2 × C), 59.1, 43.2, 39.7, 35.7, 32.3, 31.4, 27.3 (2 × C), 26.8, 25.7, 23.4, 23.3, 17.7, 15.9; HRMS (ESI) *m/z* 319.2980 (M+H)⁺; calcd for C₂₂H₃₈OH: 319.3001.